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ABSTRACT

The Great Basin is an enclosed depression at the northern terminus of the Basin
and Range province of the North American cordillera. The Great Basin is a large
pull-apart zone composed of smaller nested pull-apart basins that formed at differ-
ent times and places. The Great Basin developed primarily as a sinistral pull-apart
zone due to left-lateral motion on NE-SW lithospheric-scale fault zones. The fault
zone on the north side is a wide NE-SW trending zone of spaced discontinuous faults,
informally referred to as the Elko Tectonic Zone, analogous to the earlier named and
parallel Great Falls Tectonic Zone through Idaho and Montana. The Elko Tectonic
Zone ranges from the Walker Lane in western Nevada northeast to Wyoming, and
the Yellowstone hot spot track (Snake River Plain) is part of this tectonic zone. The
tectonic zone corresponds with the boundary between North American Precambrian
continental lithosphere on the southeast side and accreted lithosphere on the north-
west side. This upper plate lithospheric-scale break may have influenced the develop-
ment of a tear fault in the subducted oceanic Farallon plate, causing it to break up,
leaving the residual Farallon plate to the south and the Juan de Fuca plate to the
north. The residual Farallon plate slowed in its rate of subduction, sank, steepened
and rolled back, creating a southwestward migration of the continental arc magmatic
front through Cenozoic time. Pull-apart basins developed at the same times and plac-
es as the contemporaneous arc magmatic front.

The southern boundary fault system of the Great Basin was also a NE-SW trend-
ing sinistral strike-slip fault zone and the sinistral Garlock fault zone in California
was an extension of this Great Basin-forming boundary shear zone.

The central part of a pull-apart basin is commonly a ridge system, called a hinge
zone, which separates different parts of the basin. The hinge zone experiences the
most extension of any region of a pull-apart basin over the life of the basin. A hinge
zone may therefore be a site of significant extensional unroofing and metamorphic
core complexes may rise to the surface. The probable hinge zone of the Great Basin
has been identified in eastern Nevada and is bounded by a set of metamorphic core
complexes.

Voluminous felsic ignimbrite eruptions took place from Late Eocene to Early
Miocene time and the ash-flow tuffs were deposited on a gently-dipping surface, yet
it has been recognized that thick sequences of tuffs abruptly thin and did not cross a
topographic barrier in the Toquima and Toiyabe Ranges. Rather than being depos-
ited on a high altiplano-type plateau, the ignmbrites may have been erupted through
and laid down on the flat floors of pull-apart basins and the barrier may have been a
hinge zone within a pull-apart basin.

The Great Basin formed throughout Cenozoic time from Eocene to mid-Miocene
time by accumulated extension in a WNW-ESE (290°) direction by the development
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of nested pull-apart basins, both separate and overlapping in time and space. Most of
these basins were sinistral and dominantly controlled by NE-SW structures within or
parallel to the Elko Tectonic Zone. After mid-Miocene time, as the Walker Lane NW-
SE dextral strike-slip fault zone became established, pull-apart basins in the Great
Basin increasingly experienced dextral shear and the accumulated direction of exten-
sion changed to WSW-ENE (255°), perpendicular to the northern Nevada rift trends.

Keywords: tectonic evolution, Great Basin, Cenozoic extension, Elko Tectonic Zone,

Walker Lane

INTRODUCTION

The Great Basin (Figure 1) is an enclosed depression at
the northern terminus of the Basin and Range province of the
North American cordillera. Like the rest of the Basin and Range
province, the Great Basin is characterized by sinuous ranges
generally just tens of kilometers long, separated by gravel-filled
basins. The topographic features were famously described by
geologist Clarence Dutton as an “army of caterpillars marching
toward Mexico.” Although having the same type of topography,
the Great Basin is unique within the Basin and Range province
by having internal drainage, a feature first recognized by the ex-
plorer John C. Fremont, who gave the feature its famous name.
The reason for the internal drainage of the Great Basin is that
it is itself a large compound pull-apart basin, composed of a set
of smaller nested enclosed pull-apart basins, each of which also
had internal drainage during most of its life.

Extension forming the Great Basin did not start in Mio-
cene time (the beginning usually cited at around 17 Ma ago)
as is commonly stated in the literature, e.g. Wernicke, 1992.
Indeed, some have suggested that the bulk of extension in
the Great Basin took place after 10 million years ago (Col-
gan and Henry, 2009, 2017). Recent publications suggest
that the period from 49-17 Ma was essentially atectonic,
when the surface of Nevada was a high-standing gently-
sloping Altiplano-type plateau, which became known as the
Nevadaplano (e.g. DeCelles, 2004; Best and others, 2009;
Henry and others, 2012).

This paper will present the argument that extension, in the
form of transtension, took place in the Great Basin throughout
Cenozoic time and that overall extension in a WNW-ESE di-
rection was effected by cumulative transtension as nested pull-
apart basins formed in various locations at various times. These
basins formed on both the west and east sides of a stationary
but splitting hinge zone region which had major unroofing and
detachment faulting taking place on its flanks as metamorphic
core complexes rose. The early Great Basin developed primar-
ily as a sinistral pull-apart zone, spreading away from the cen-
tral hinge zone region. One of the major structural zones ac-
commodating sinistral strike-slip shearing, herein referred to as
the Elko Tectonic Zone, consists of numerous NE-SW trending

fault strands, which controlled pull-apart basin location and for-
mation from Eocene to mid-Miocene time.

Extension in the Great Basin earlier than Miocene time
has been recognized but not elucidated, e.g. Dickinson,
2006. Extension associated with the Ruby Mountains core
complex has been recognized as multi-generational, with
major exhumation taking place in mid-Miocene time, around
17 Ma ago, and earlier extension taking place from Eocene
to Miocene time (Pape, 2010). The earliest extension in this
part of the Great Basin may have been early to middle Eo-
cene (Sullivan and Snoke, 2007) and another early period
was mid- to late-Oligocene time (Kistler and others, 1981).
Although areas surrounding the core complex, such as the
Carlin-Pinion region, may have undergone less extension
during these periods, they were still experiencing extension-
al or transtensional faulting.

Part of the evidence cited to indicate only minor extension
during Eocene to early Miocene time is the dearth of exposed
coarse clastic sedimentary rocks of this age. However, such
rocks are sometimes observed on the range. For example, at
Copper Basin on Battle Mountain, 500 meters of Oligocene
conglomerate are tilted 25 degrees and unconformably over-
lain by 16-Ma old rhyolite (Henry and others, 2011), suggesting
probable Oligocene-Early Miocene faulting.

As another example, Haynes (2003), in a detailed study
of the Eocene Elko Formation, concluded that there were two
depocenters at that time separated by a topographic high which
hosts the Carlin trend. The eastern sedimentary assemblage has
boulder conglomerates at the base, overlain by lacustrine lime-
stone and fine clastic rocks. On the west side of the Carlin trend
high, the Eocene rocks are all pebble to cobble conglomerates
(Haynes, 2003). Paleocurrent indicators in that area suggest
transport from the Carlin trend ridge system to the north and
west (Haynes, 2003), from a topographic high into a basin.

Transtensional pull-apart basins, comprising the Great Ba-
sin, began forming at least as early as Eocene time. They were
instrumental in situating the prolific gold deposits of the Great
Basin throughout Cenozoic time and they also were part and
parcel of caldera-forming voluminous ignimbritic eruptions
from Late Eocene to Miocene time.

Prior to 17 Ma, the dominant sense of shear in the Great
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Basin was left-lateral, accommodated by NE-SW faults, concen-
trated in a zone referred to as the Elko Tectonic Zone, which is
parallel to the Great Falls Tectonic Zone to the north. The Elko
Tectonic Zone marks several geotectonic structures—a possible
major lithospheric break between North American Precambrian
continental lithosphere to the southeast and accreted lithosphere
to the northwest, the site of a probable tear fault along which the
subducted Farallon plate broke apart and the subsequent track of
the Yellowstone hot-spot mantle plume. It also appears to have
been a major zone of sinistral strike-slip and oblique shearing in
Tertiary time and formed the northern boundary of the Great Ba-
sin hinge zone and also formed the boundary between multiple
sets of pull-apart basins of various ages.

Beginning around 17 Ma ago, NW-SE right-lateral strike-
slip faults came to dominate in the Walker Lane region, in the
beginning of the transition from a convergent to a transform
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Figure 1. Shaded relief map showing outline of the Great Basin and the tectonic zones.
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plate margin. This was also the time that major extension across
the Great Basin and rapid exhumation of metamorphic core
complexes in the Great Basin hinge zone region took place.
Pull-apart basins, at least on the west side of the Great Basin,
that had been sinistral, became dominantly dextral. Subduction
of the Farallon plate ceased south of the Elko Tectonic Zone
tear fault, and the Walker Lane, and associated Northern Ne-
vada Rift zones, formed in the rapid transition to a transform
boundary as the Pacific plate impinged on North America.

Fault Systems and Pull-Apart Basins
In Figure 1, it can be seen that there are two main trends of
basins and ranges within the Great Basin, the predominant one

being NNE-SSW to NNW-SSE and the less dominant direction
being NE-SW. A third more minor trend is NW-SE, although
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this trend is dominant in the Walker Lane, on the west side of
the Great Basin. The three structural trends reflect three main
fault systems. The NNE-SSW to NNW-SSE trends are parallel
to normal faults, the NE-SW trends are related to left-lateral
strike-slip and left-oblique faults and the NW-SE trends are due
to right-lateral strike-slip and right-oblique faults. The NE-SW
and NW-SE strike-slip fault zones also experienced normal slip
at times during their lives.

In Figure 1, the area labeled Elko Tectonic Zone, in which
the NE-SW fabric is particularly noticeable, goes from the
western Nevada border northeastward to Wyoming, through the
Snake River Plain. This NE-SW structural zone is subparallel
to the Great Falls Tectonic Zone to the north through Idaho and
Montana (see Figure 1).

The Great Falls Tectonic Zone represents a major litho-
spheric discontinuity separating two Archean cratonic prov-
inces (Boerner and others, 2011) and had major shearing along
it (O’Neill and Lopez, 1985). There is evidence that the Elko
Tectonic Zone also represents a major lithospheric discontinu-
ity. For example, the 87Sr/3Sr = 0.706 line (Tosdal and others,
2000) bends into and remains parallel with the tectonic zone
near its northern edge (see Figure 1). This line is commonly
taken to mark the boundary between continental and oceanic
lithosphere. Sims and others (2005) suggest a large block of
Archean-age continental lithosphere, part of their Wyoming
Province, under northern Nevada (see Figure 2), and the north-
west edge of this block is within the Elko Tectonic Zone.

The Yellowstone hot spot track lies within the Elko Tecton-
ic Zone, also indicating a lithospheric-scale subvertical break.
As will be discussed later in this paper, the Elko Tectonic Zone
probably also marks a break (tear fault) in the subducted Faral-
lon plate, along which the plate broke into separate slabs, such
as the Juan de Fuca plate to the north, which continued to sub-
duct, generating the Cascades volcanic arc. South of the Elko
Tectonic Zone, the residual Farallon plate foundered, sank and
retreated westward until eventually its subduction ceased. The
mantle plume generating the Yellowstone hot spot track is prob-
ably a minor player in the overall tectonics of the Great Basin,
merely opportunistically rising along a tear fault.

The three main kinematic directions are related to transten-
sional tectonics as illustrated in Figure 3. In this simple shear
model, the pull-apart basins, with parallelogram geometry, are
opened by lateral and normal movement along the NE-SW or
NW-SE fault systems. A typical pull-apart basin has a central
hinge zone that separates the basin into two parts. This feature
was recognized and named in the Salton Sea pull-apart basin by
Brothers and others (2009). The hinge zone of a pull-apart basin
was so-named because, in the early formation of the basin, it
remains a stationary high that acts as the hinge of a trap door as
the developing basin breaks and drops at the ends of the basin.
Later in the evolution of a basin, continued extension across
the hinge zone may split it, causing high-angle normal faults
and basins within and adjacent to the hinge zone area. A pull-
apart basin expands outward by movement along the bounding
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strike-slip faults, sometimes leaving remnant narrow basins and
ranges within it. Over the life of the pull-apart basin, the maxi-
mum amount of extension takes place across the hinge zone.
It may be unroofed along detachment faults and isostatically
rise. It is not uncommon in the Great Basin to find older rocks
exposed in hinge zones. In the main hinge region of the Great
Basin discussed below, high-grade metamorphic rocks in core
complexes were brought to the surface.

In Figure 3, the hinge zone is elongate parallel to the direc-
tion of 61, the maximum principle stress, and the basin expands
outward orthogonal to the hinge zone, parallel to the direction of
63, the minimum principle stress. In Cenozoic fault geometries
of the Great Basin, if the maximum principle stress direction was
oriented more NNE-SSW, the dominant sense of shear was sinis-
tral, with basin opening controlled by sinistral movement along
the NE-SW faults. If the maximum principle stress direction was
oriented more NNW-SSE, then the dominant faults were NW-SE
and the pull-apart basins were mainly dextral.

Figure 4 shows some of the individual fault strands within
the Elko Tectonic Zone. The tectonic zone comprises a set of
NE-SW sinistral strike-slip faults that form the boundary of
several pull-apart basins.

Hinge Zone of the Great Basin

Throughout the life of the Great Basin, the most cumula-
tive extension would have taken place across the hinge zone
area. The Great Basin hinge zone is a sinuous NNE-trending
zone of basins and ranges with several metamorphic core com-
plexes on the flanks. The major period of exhumation of the
core complexes was in the range of 18—14 Ma ago. However,
earlier periods of extension in the core complexes have been
documented, e.g. Late Eocene—Late Oligocene in the Snake
Range (Lee and others, 2017) and Middle to Late Oligocene in
the Ruby Mountains-East Humboldt Range core complex (Sul-
livan and Snoke, 2007; Kistler and others, 1981). The Middle
Miocene episode represents a period of rapid extension across
the Great Basin with accelerated upper crustal thinning (cover
rocks sliding off the hinge zone structural high), triggering the
isostatic rise of deeper crustal rocks in the footwalls of detach-
ment faults on the outer edges of the hinge zone. The core of the
hinge zone, probably throughout the period prior to, during and
after the metamorphic core complex exhumation, continued to
experience extension and is currently marked by gravity lows
in both complete Bouguer and isostatic residual gravity rep-
resentations. The isostatic residual gravity anomaly enhances
basin and range density contrasts and suggests that at least two
deep sediment-filled basins developed in the core of the hinge
zone—Steptoe Valley and the southern end of Spring Valley.
Ranges adjacent to these basins have been described as extreme
extension domains (Long and Walker, 2015). These deep basins
and hyper extended range rocks indicate the extreme amount of
extension that took place within the hinge zone area.

Although significant extension takes place in the interior of
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Figure 3. Principal fault directions, senses of shear, principal stress directions
and overall extension directions in a simple shear model of pull-apart basins.

a hinge zone region, the distribution of metamorphic core com-
plexes around the edges of the Great Basin hinge zone suggests
that the most major unroofing takes place at the periphery of the
hinge zone, perhaps from carapace rocks sliding to the outside
of a regional welt.

The evidence suggests that at least some metamorphic core
complexes are a manifestation of the hinge zones of pull-apart
basins, and therefore the location of metamorphic core com-
plexes may lead to the recognition of the hinge zones of pull-
apart basins.

Pull-apart Basins Within the Great Basin

The Great Basin developed as a series of nested dominant-
ly sinistral pull-apart basins, that varied in space and time as
the overall basin evolved. Figure 5 shows the hinge zone of the
Great Basin, bounded by the Ruby Mtns-Grant Range-Snake
Range-Albion Range metamorphic core complexes. Older ba-
sins may no longer be topographic depressions. However, the
two youngest basins, which lie on the western and eastern tips
of the Great Basin (see Figure 5), are still rectangular topo-
graphic depressions with internal drainage filled with Miocene
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to Recent volcanic deposits. In post-glacial times, these basins
were the sites of enormous lakes now evidenced by multiple
high terrace cuts and tufa deposits. Named after the histori-
cal lakes, the basins are here referred to as the Lahontan Basin
on the west and the Bonneville Basin on the east. The current
floors of the basins are relatively flat-lying surfaces underlain
by fluvial and playa deposits. Figure 4 shows the outlines of
these two pull-apart basins and the NE-trending fault zone that
partly controlled their development.

The Lahontan basin started out life, at least as early as Oli-
gocene time, as a sinistral basin and was later (Middle Miocene
and later) overprinted, expanded east-west and elongated to the
north by dextral transtension as the Walker Lane right-lateral
strike-slip fault system became the western boundary of the
pull-apart basin. The Bonneville pull-apart basin may also have
had both sinistral and dextral periods of dominant shear. This
basin is not dealt with extensively in this report.

Round Mountain Basin

Various pull-apart basins formed at different times in dif-
ferent places, generally following the documented sweep of
magmatism from NE to SW through Nevada (see Figure 7 be-
low). As the subducted slab continued to sink and retreat to the
SW, Oligocene-age basins formed in central Nevada (Round
Mountain Basin, Figure 6). The older basins are no longer topo-
graphic lows, but the Round Mtn Basin is evident in the gravity
data as a low anomaly, probably due to the large volume of
low-density felsic volcanic rock within it. The nature of vol-
canic activity also changed from more effusive andesite activ-
ity to felsic caldera-forming ignimbrite eruptions in Oligocene
time. These felsic ignimbritic eruptions have been attributed to
volcanic arc activity during subducted slab rollback beneath
thick continental crust (Best and others, 2016). The extensional
setting of similar voluminous felsic ignimbritic eruptions else-
where has been recognized, such as in the Italian Campania
Volcanic Zone (Torrente and others, 2010).

The Round Mountain pull-apart basin was probably expe-
riencing extension from Late Eocene to Early Miocene time,
based on the age of calderas within it. It is a rhomboid feature
defined by a pronounced gravity low anomaly (see Figure 6),
probably due to being filled with light felsic tuff. The outline
of the basin is shown in Figure 6 and the probable hinge zone
is highlighted in red hatch. The hinge zone includes the Toqui-
ma Range and some of the Toiyabe Range (Colgan and Henry,
2017). This is also part of a zone identified by Speed and others
(1988) as the Toiyabe Uplift. As is common in hinge zones of
pull-apart basins in the Great Basin, there has been sufficient
exhumation to expose rocks at least as old as Early Cambrian
in the ranges. This zone also was identified by Best and others
(2013) as a topographic barrier to ash flows on both the east
and west side of the ridge system. It was recognized that abun-
dant calderas formed in a cluster on the east side of this feature,
the tuffs were laid down on basically a gently sloping surface
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and thinned abruptly against the Toquima Range barrier (Best
and others, 2013). The clustering of calderas within the basin is
shown in Figure 7. The surface the tuffs were deposited on is
what has been suggested to be a high plateau similar to the An-
dean Altiplano, and the concept has become entrenched in the
literature, becoming known as the “Nevadaplano” (DeCelles,
2004). Rather than being an altiplano, the gently-sloping sur-
face was probably the floor of a pull-apart basin, the caldera-
forming eruptions took place within the basin and the tuffs were
largely confined to the side of the basin they erupted in and did
not cross the dividing hinge zone ridge. Such caldera-forming
eruptions within pull-apart basins along volcanic arcs are docu-
mented in younger arcs, such as the Toba Caldera in Sumatra
(see Figure 8).

In the Toiyabe Range, Smith (1992) recognized detach-
ment faults and more steeply dipping normal faults and sug-
gested synvolcanic Oligocene extension on the order of 100—
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200%. Smith (1992) also recognized the presence of basins
bounded by steep normal faults with uplifted footwalls and
made the cogent suggestion that pre-Miocene Great Basin
faulting was similar in style to Miocene to Recent faulting.
The other line of evidence from the same area supporting this
similarity is the linear topographic high barrier separating tuff
basins, reported by Best and others (2013). This Oligocene
geometry of basins and ranges indeed mimics present-day ge-
ometry and supports that there was significant local extension
in Oligocene time.

Another way to determine that there had to be significant
extension during this period is that, if Sullivan and Snoke
(2007) and Kistler and others (1981) are correct that there was
significant mid- to late-Oligocene exhumation of the Ruby
Mountains-East Humboldt Range metamorphic core com-
plex, then there probably was also significant concomitant
shallow extension. Exhumation means unroofing, and unroof-

Figure 4. Some individual faults defining Elko Tectonic Zone. Yellow faults are dominantly left-lateral strike-slip, blue faults are dominantly right-lateral strike-
slip.
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Figure 5. Younger pull-apart basins that are still topographic lows. Red hatch areas are hinge zones, solid red regions
are metamorphic core complexes.
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Figure 6. Complete Bouguer Gravity anomaly map showing rhomboid shaped gravity low (pink and white colors) in
the Round Mtn Basin, an Oligocene-age pull-apart basin with internal calderas.
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ing means crustal extension, and not just lower crustal ductile
flow. The top of the metamorphic complex has to come off
and those cover rocks have to move laterally away from the
core complex.
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Figure 8. Quaternary example of caldera eruption in a pull-apart basin: 73,000
year-old Toba Caldera formed in a pull-apart basin developing along the Su-
matran dextral strike-slip fault within the Sunda volcanic arc (after Putra and
Husein, 2016).

Northern Nevada Rifts

Starting about 16 Ma ago, two major NNW-SSE rift zones
cut and extended south of the Elko Tectonic Zone, the Kings
River Rift to the west and Northern Nevada Rift to the east (see
Figure 9). Voluminous basalts along the two rifts are essentially
the same age—around 15.5 Ma old. The basalts are locally as-
sociated with rhyolitic ignimbrites and effusive rocks.

Northern Nevada rifts suggest an extension direction of
around 255 degrees. The bulk of the Great Basin however
formed with a cumulative extension direction of around 290
degrees (see Figure 9) related to sinistral transtension. In the
Lahontan pull-apart basin, sinistral spreading was replaced by
dextral opening as activity along the Walker Lane increased.
The Walker Lane is dominantly a set of NW-SE right-lateral
strike-slip faults joined by NNW-SSE normal fault segments
(dilatant jogs). Normal faulting in the Walker Lane region,
starting around 4 million years ago, created the Owens Valley
and Salton Sea grabens with the NNW-SSE orientation and fa-
cilitated the rise of Sierra Nevada horsts. The southern part of
the Sierra Nevada has the NNW-SSE trend, the trend of the
northern part is more NW-SE, parallel to the strike-slip faults.
The Northern Nevada rifts are essentially parallel to normal
fault trends in the Walker Lane, such as the Owens Valley gra-
ben. The 255 degree direction of extension, orthogonal to the
Northern Nevada rifts, is the direction of opening of the Lahon-
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Figure 9. Great Basin showing Miocene-Younger Pull-apart Basins, Hinge Zones and Northern Nevada Rift Zones. Pre-Middle Miocene Extension direction shown

in pink, Middle Miocene and younger extension direction shown in green.

tan basin from mid-Miocene time on (see Figure 9). The rifts
are normal fault zones kinematically related to Walker Lane-
parallel right-lateral strike-slip faults. The rifting may also have
been in a back-arc environment, related to the southern termi-
nus of the ancestral Cascades volcanic arc (Du Bray and others,
2014). At any rate, the Northern Nevada rifts were short-lived
and were part of the post mid-Miocene rapid transition from a
convergent to a transform plate boundary as the Farallon plate
was completely subducted and the Pacific plate impinged on
North America.
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